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This work presents a nonlinear feedback approach for controlling the Lorenz equation. The deriva-
tion of the feedback is based on linearizing an input-output dynamic of the system, which leads to large
regions of asymptotic stability. Here the input signal to the Lorenz equation is the applied heat via the
Rayleigh number. The performance of the nonlinear feedback is tested via the stabilization of equilibri-

um points and periodic orbits.

PACS number(s): 05.45.+b

I. INTRODUCTION

Controlling chaos has become a challenging topic in
the field of nonlinear dynamics [1]. Although it is possi-
ble to modify the dynamics of a chaotic system by inject-
ing time-dependent signals (nonfeedback control) 2], it is
accepted that feedback control offers more advantages,
such as robustness and signal tracking [1,3-5]. In this
work we focus on the feedback control of a continuous
time system: the Lorenz equation.

Roughly speaking, there are two ways of feedback con-
trolling a chaotic system: (i) control based on a Poincaré
map of the system and (ii) continuous control. This first
approach was suggested by Ott, Grebogi, and Yorke
(OGY) [1]. The main drawback of such an approach is
that the system trajectory must reach a neighborhood of
the desired trajectory (in most cases, a periodic orbit) on
the Poincaré section in order to active the control action.
This leads to large stabilization times and poor robust-
ness properties. In principle, it is desirable to have the
control activated all the time in order to induce stronger
modifications of the dynamics. This idea leads to the use
of continuous controls [6]. Continuous control is the typi-
cal approach in control theory [5,11].

The Lorenz equation is a well known chaotic system,
which has been used for control studies [7-9]. Regarding
the control of the Lorenz system, and following Hartley
and Mossayebi’s work [9], the control input was arbitrari-
ly added with little consideration for actual physics. In
particular, Qu, Hu, and Ma [8] included a manipulated
additive term to the original equation. The main criti-
cism of such an approach is that the derived feedback
control is hardly physically realizable. From the applica-
tions viewpoint, control inputs must be related to actual
physical parameters [9,10]. In a recent work, Hartley
and Mossayebi [9] used the applied heat via the Rayleigh
number as the control input to derive a continuous feed-
back control. Their control derivation is based on the
Taylor linearization of the system dynamics in a refer-
ence point. Classical results in linear control theory [11]
assure that stabilization of the linear system implies local
stabilization of the nonlinear one. However, when the
desired dynamics is a nontrivial periodic orbit, the prob-
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lem arises of choosing an “adequate” Taylor lineariza-
tion. In this work, we derive a nonlinear feedback con-
trol which is useful to stabilize both equilibrium points
and periodic (or nonperiodic) trajectories.

The work is organized as follows. The next section
presents the derivation of the feedback controller and
states some closed-loop stability properties. After this
analysis, the performance of the resulting feedback is
evaluated via numerical simulations.

II. DERIVATION OF THE FEEDBACK CONTROL
The Lorenz system is given by [12]

x=P(x “‘y)=f1(X,y,Z) »
Yy=Rx—y—xz=f,(x,y,2), (1)
2=xy_bz =f3(x,y,2) ’

where P >0 is the Prandtl number, b >0 is a constant,
and R is the Rayleigh number. R will be allowed to vary,
so that R is taken as the control input. The system (1) is
related to a fluid thermosiphon [9,10] in the following
way: R is proportional to the heat applied to the bottom
half of the fluid, x is the fluid velocity in the loop, y is the
vertical temperature difference, and z is the horizontal
temperature difference (see Fig. 1).

We need the following observation to derive the feed-
back control: if the vertical temperature difference y is
controlled to a fixed value y ¢ via the applied heat R,
then dy /dt =0 and the system (1) is reduced to the next
one:

X=—Px+Py., @)
Z=—y ex—bz,

which is a linear system with eigenvalues { —P, —b}, so
therefore the system (2) is asymptotically stable. Hence,
in principle, it is sufficient to stabilize the vertical temper-
ature difference y to stabilize the complete system (1). To
achieve such an objective, we will follow a nonlinear ap-
proach. The central idea is to linearize an input—output
(y) dynamic of the system (1). Formally, such objective
can be achieved via the singular feedback
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FIG. 1. Schematic description of a thermosiphon.

R(x,y,z)=(v+y+xz)/x , (3)

where v is a new control input. Substituting (3) in (1)
yields

x=P(x—y),
y=v, (4)
z=xy—bz ,

which is a linear system in cascade with a nonlinear one.
In this way, v can be chosen in such a way that the sys-
tem (4) is asymptotically stable [for instance,
v=—K(y —p.), K>0]. The main problem with the
feedback (3) is its singularity at the set
3={(x,y,2):x =0}. At SCR3, the system (1) is not sen-
sible to control actions [in other words, the Lorenz sys-
tem (1) is not controllable at =, which corresponds to
zero flow velocity into the thermosiphon]. When a physi-
cal trajectory approach X, the control feedback asks for
infinite control signals. Furthermore, when a trajectory
crosses =, R (x,y,z) changes from + « to — o« (or from
— o to + o), so that there is not a continuous and
bounded function R(x,y,z) that arbitrarily approximates
R (x,y,z). From a physical viewpoint, the above control
actions in the set = imply that one must make drastic (in
fact, discontinuous) changes in the heating operation at
the bottom of the loop. As in the case of resolution of
singularities in algebraic curves, the singularity of the
feedback control at the set 3 can be regularized (in some
sense) by enlarging the dimension of the working space.
Consider R as a function of time. We take the second
time derivative of y along the vector field of (1),

J=Rf,—f,—xf3—f1z+xR , (5)
where we have used f; for f;(x,y,z). If dR /dt is taken as
R=(—Rf +f,+xfy+zf +v)/x , (6)

the closed-loop dynamics becomes d2y /dt?>=v, which is
a linear differential relation between the control input v
and the controlled variable y. Since v can be arbitrarily
assigned, we set v=k,f,+k,(y —y.s) to stabilize an
equilibrium point of (1) related to y . If the objective is
to track a nontrivial reference signal y_(¢) (maybe a
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periodic orbit), the input v must be chosen as
v =d2yref/dt2+k1(f2 _dyref/dt)"}'kz(y —yref) .

Here k; and k, are chosen in such a way that the roots of
the polynomial P(r)=r2—k,r—k, lie in the left half of
the complex plane. Observe that the control input R
satisfies a differential equation, which must be integrated
together with the Lorenz system (1). In the control
theory literature [S], (6) is known as a first-order dynami-
cal compensator. Assuming that y . is constant (equilib-
rium point), under the following singular change of coor-
dinates:

Zy=Y T Vet >
z,=Rx—y—xz ,
(7)
Zy=Xx ,
z,=z ,
the controlled system (1), (6) becomes

z2172,,

(8a)
Zy klzl +k222 ’
23_P(Zl_23) >

(8b)

2422321 _b24 N

which is globally, asymptotically stable at the origin.
Analogous stability conclusions can be stated for the case
of the signal tracking y (#). Note that the singularity
x =0 has been transferred from the control signal in (3)
to the vector field that generates R in (6), which implies
that a crossing of a trajectory of (1),(6) induces a blow-up
in the time derivative of R. At a crossing, the control sig-
nal R (¢) can be arbitrarily approximated by a continuous
one R(t) [i.e., |R(z)—R(t)| <8, with 6§>0 arbitrarily
small]. In this way, the feedback (6) is physically realiz-
able. The feedback (6) can be interpreted as a first-order
filter that regulates the feedback (3).

Resuming, one can think of the closed-loop system
(1),(6) as a piecewise asymptotically stable linear system
with closed-loop trajectories ¢,(x(,y4,2q,R () suffering in-
stantaneous bursting when crossing the singularity set
3'=3XR. Although the regularization of singularities is
actually an open problem in control theory, we conjec-
ture that higher-dimensional dynamical extensions (that
is, R satisfies an nth-order differential equation) smooth
the control signal R (¢) in a more efficient way. In this
work, we restrict ourself to the first-order extension (6).
The next sections present simulations with the controller
(6).

III. STABILIZATION OF EQUILIBRIUM POINTS

As in most studies, in what follows we set P=10 and
b=2%. Also, we will take the stationary value of the con-
trol signal R =28 (the usual value for chaotic behavior).
The system equilibrium points will first be found. Let
capital letters designate equilibrium points. The first
equation gives X =Y; the last two equations give
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FIG. 2. (a) Velocity of the fluid in the thermosiphon. The
control is activated at ¢t =10 to stabilize the equilibrium point

(8.485,8.485,27). (b) Control actions corresponding to the stabil-
ization of the equilibrium point (8.485,8.485,27).

X=Y=118(R,;—1)/3=18.485

and Z=R_—1=27. In addition to these two equilibri-
um points, there is another one at (X,Y,Z)=(0,0,0),
which does not depend on the stationary value R [i.e.,
the origin is an equilibrium point of (1) for all R €R].
Although this equilibrium is able to be stabilized, it has
no physical significance because its existence is related to
the absence of fluid flow in the thermosiphon loop. By
symmetry, it is sufficient to consider stabilization at
(X,Y,Z)=(8.485,8.485,27). As a consequence, Y,
=8.485. By setting k; =—400 and k, = —40, the input
(v)—output (y) linear system possesses the eigenvalues
A;=A,=—20, which are used in all numerical simula-
tions (the value —20 was chosen as the base for numeri-
cal simulations). In addition, the following bounds have
been imposed: 0= R (¢) <50. A simulation using the con-
troller (6) is given in Figs. 2(a) and 2(b). The control is
achieved at =10 with R (1 =0)=28. Observe that the
stabilization of the equilibrium point is preceded by a
short transient behavior.

IV. STABILIZATION OF PERIODIC ORBITS

In OGY’s work, a feedback based on a Poincaré sec-
tion was used to stabilize periodic orbits embedded in
chaotic attractor [13]. However, in experiments (even in
numerical simulations) it is difficult to find unstable
periodic orbits. As a consequence of the denseness of the
chaotic orbit, there is an uncountable number of nearly
periodic orbits (NPO’s) which can be used as an alterna-
tive to periodic orbits. The NPO’s ¢,(x,y,z) are finite
time T aperiodic pieces of a more complicated (chaotic or
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FIG. 3. Symmetric NPO of the Lorenz system (1).

nonchaotic) trajectory, of which the ending position
¢r(x,y,2z) is very near to the starting point ¢y(x,y,z). A
NPO has the following characteristics: (i) it is not a com-
plete trajectory of the uncontrolled system (1); (ii) due to
the sensitivity to initial conditions, it is inherently unsta-
ble. Therefore, without the action of a control, the sys-
tem (1) cannot track a NPO. Figure 3 shows a symmetric
NPO. Figure 4(a) shows the velocity in the loop as a
function of time; the control is activated at t=10 as
shown in Fig. 4(b). Note that, after a transient behavior,
the velocity x follows a periodic orbit. On the other
hand, after such transient behavior, the control signal
R (1) takes values in the neighborhood of R =28, which
corroborates the fact that the reference NPO is a piece of
a complete trajectory of (1) with R =R ;. Therefore, ex-
cept for some isolated points, the NPO in Fig. 3 exists
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FIG. 4. (a) Velocity of the fluid in the thermosiphon. The
control is activated at z=10 to track the NPO of Fig. 3. (b)
Control actions corresponding to the tracking of the NPO of

Fig. 3. (¢ = crossing of the system trajectory at 2, m =
matching of initial and ending points.)
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FIG. 5. Nonsymmetric NPO of the Lorenz system (1).

only for R =R ;. There are two special points where the
control signal R (t) suffers bursting: the first one is when
the system trajectory crosses the singularity set 2’, and
the second one when some control actions [R (¢)#28],
must be applied in order to match the starting point
#o(x,y,2) with the ending point ¢, (x,y,z). More complex
NPO’s can be obtained numerically, as shown in Fig. 5.
Analogously to the case of the NPO in Fig. 3, Fig. 6(a)
shows the velocity in the loop as a time function, and Fig.
6(b) shows the control actions. Also, except at isolated
points, the control signal moves in the neighborhood of
the stationary value R =28.

V. CONCLUSIONS

We have presented a nonlinear feedback control for the
Lorenz system. An input-output linearization approach
allows us to address efficiently the stabilization of both
equilibrium points and periodic orbits. The resulting
controller is given by a differential equation, which
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FIG. 6. (a) Velocity of the fluid in the thermosiphon. The
control is activated at t=10 to track the NPO of Fig. 5. (b)
Control actions corresponding to the tracking of the NPO of

Fig. 5. (¢ = crossing of the system trajectory at X', m =
matching of initial and ending points.)

displays a feedback structure. As a consequence, one has
the freedom of choosing an initial condition for the con-
trol signal. Finally, this work on the control of the
Lorenz equation can be seen as a complement to the clas-
sical approach of Hartley and Mossayebi [9].
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FIG. 1. Schematic description of a thermosiphon.



